We have moved to a new website. You are being redirected!

When Is The Best Time To Buy Or Sell A Concert Ticket?

We have moved to a new website. You are being redirected!


A couple of weeks ago, Stromae performed at a sold out show in Washington, DC. Several friends were scouring StubHub and Craigslist for tickets, but ticket prices seemed to be all over the place. That got us wondering whether the market price for concert tickets exhibits any patterns that can be used to improve your chances of getting the best price (highest, if you’re the seller; lowest, if you’re the buyer).

First, we needed a dataset of market transactions for concert tickets. As it turns out, StubHub provides this data to help sellers determine a listing price. Unfortunately, StubHub would not provide us with a dataset of sold ticket prices so we had to manually scrape their website over the course of a couple of weeks. Our dataset includes 16,562 ticket sales from 32 concerts in 17 cities and from 20 different artists. We started out with more than 20,000 ticket sales but remove transactions that occurred earlier than 90 days before the show, as well as the top and bottom 5th percentiles to remove outliers in the data.

The source code for the analysis can be found here. We usually provide the dataset but, in this case, we’ll need StubHub's approval to share the data that we scraped from their website.

Grouping and Standardizing Ticket Prices

Since ticket prices vary by city, show, seating section, date, etc., the first challenge was to group the raw data into categories in order to compare the 16,562 data points that we have in a meaningful way. We’re interested in the change in ticket prices for each seating section as the date of the show approaches, so we grouped the data by section (e.g., ‘Ed Sheeran / New York / Orchestra 201’ would be one section) with the timeline being the number of days before the show.

A second challenge was to scale or standardize ticket prices whose absolute dollar value varies significantly from section to section. After all, we are interested in the movement of prices over time and not their absolute dollar value. To standardize the prices, we used z-score scaling, which transforms each ticket price into a value that represents its position (percentile rank) within its section assuming a normal distribution of prices. In other words, the average/mean ticket price in each section will have a value of zero and the standard deviation of prices in each section will be one (meaning that 95% of ticket prices in each section will have a z-score between -1.96 and 1.96). This makes it easier to compare the relative movement of ticket prices across sections because now prices in each section have the same scale (roughly -2.0 to 2.0, with an average of zero), instead of an absolute dollar value (which, in our case, ranges from a few dollars to more than $500, with different averages for each section).

Figure 1 shows the impact of z-score scaling on the distribution of the ticket prices in our dataset. As you can see, z-score scaling standardizes the ticket prices by converting them into a normal distribution with mean zero and standard deviation of one. This allows us to compare ticket prices across sections as the average ticket price in each section will be zero and the distribution of ticket prices will be the same.

Figure 1. Ticket Price Frequency Distribution


Ticket Price Pattern

Now that we’ve grouped and standardized the ticket price data, we can start observing patterns. Figure 2 shows the average ticket price z-score during the 90 days before a show, converted into the relevant percentile rank. The blue shaded area shows the 95% confidence interval. One way to interpret the chart below is: 55 days before a show (x-axis), the average ticket price (across sections) is in the 50th percentile (y-axis) of prices for tickets sold in that section during the entire 90 day period. The red dotted line is a best fit curve.

Figure 2. Ticket Price Pattern


From the period between 90 and 30-35 days before a show, ticket prices tend to gradually increase, peaking about 30-35 days before a show. After that, prices start to fall until the day of the show. We suspect that this pattern is the result of people’s scheduling habits. Between 90 and 30 days before a show, demand grows as people start planning to attend a show and go purchase tickets from the market. Supply, on the other hand, is limited, as most ticketholders also plan to attend the show. In the last 30 days, the price is driven down by an increase in the supply of tickets as unexpected schedule conflicts force people who had previously planned to attend a show to sell their tickets.

Based on the pattern above, the best time to buy a concert ticket is about 55 days before a show (the earlier the better). If that time has passed, then you’re better off waiting until the day of the show to buy your ticket as prices are likely to gradually fall over the last 30-35 days. On the day of the show, ticket prices are on average as low as they were about 55 days before the show.

If you’re a seller, you’re most likely to get the highest price for your ticket 30-35 days before the show. If you’re looking to sell in the last 30 days (because of an unexpected schedule conflict?), you should do so right away. The price is likely to continue falling until show time.

2 comments:




  1. Thank you so much.your blog is very helpful.Could you please post any material on Web services testing too.


    MCX Trading

    ReplyDelete
  2. TRADEEASY offers lowest brokerage of 0.005%, highest Leverage, instant payin and payout and best technical support.

    ReplyDelete